
chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 1 | 27

UART Controller v1.2
IP User Guide

February 2024

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 2 | 27

Licensing Notice

UART Controller v1.2 is a fully tested, portable, configurable, and synthesisable soft IP core provided by

Chipmunk Logic™. The IP source files are complied with IEEE VHDL/Verilog/System-Verilog standards. All the

source codes are open-source licensed and hence may be used, modified, and shared without any restrictions or
conflicts of interest with the original developer.

This IP core is provided 'as is,' without warranty of any kind, express or implied, including but not limited to the

warranties of merchantability, fitness for a particular purpose, and non-infringement. Chipmunk Logic™ shall not

be liable or held accountable for any loss or damage (direct or indirect) resulting from the use of any product, as
the designs are not intended to be fail-safe or for use in any application requiring fail-safe performance. Hence, the
user shall assume sole risk and liability for the use of any of our products in any of their applications.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 3 | 27

Table of Contents

1. UART Controller .. 4

2. Features .. 4

3. Overview ... 5

4. Top-level Ports/Interfaces .. 7

5. Designing with the IP .. 10

5.1 Clocking and Reset .. 10

5.2 Configuring the IP.. 10

5.3 Start and Stop bit Transmission and Detection .. 13

5.4 Frame Format.. 14

5.5 Resetting, Enabling, and Disabling Transmitter .. 15

5.6 Resetting, Enabling, and Disabling Receiver ... 16

5.7 Data Transfer with the IP .. 17

5.8 Sending Breaks .. 18

5.9 Receiving Breaks ... 19

5.10 Internal Loopback support .. 20

6. Integrating the IP .. 21

6.1 FIFO Integration and Interrupts .. 21

6.2 Error Handling ... 21

7. Testing the IP .. 22

8. Application Notes .. 23

9. Known Limitations/Issues ... 24

Appendix ... 25

Revision History .. 26

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 4 | 27

1. UART Controller

UART Controller IP Core provides a simple asynchronous serial interface for data transmission

and reception. UART signalling is implemented at the serial interface. The core provides a parallel

data interface and control interface to control the data flow. It performs parallel-to-serial conversion

of data received at parallel data interface, and serial-to-parallel conversion of data received at

serial interface.

2. Features

✓ Full duplex communication, 8-bit data.

✓ Fully independent control over TX and RX. Supports operation in half-duplex mode.

✓ Configurable parity: Odd, Even, or no parity.

✓ Configurable no. of stop bits: 1 or 2.

✓ Built-in Baud Generator with 16-bit pre-scaler and configurable baud rate.

✓ Break frame transmission/reception.

✓ 8x oversampling at RX for balanced speed and error tolerance.

✓ Error detection: Frame and Parity errors.

✓ Internal loopback support for testing.

✓ Simple valid-ready handshaking at the data interface of UART transmitter and receiver for

ease of integration with FIFOs.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 5 | 27

3. Overview

The UART Controller transmits and receives the Least Significant bit (LSb) first. The core’s

transmitter (TX) and receiver (RX) are functionally independent, but use the same data format and

baud rate.

Figure 3.1: UART – 8-bit Data Format

Figure 3.1 shows the functional block diagram of UART Controller. Various interfaces and sub-

blocks are:

• Control Interface: Set of signals to control the operation of the IP, like baud rate, packet

format etc.

• Data Interface: Parallel data and handshaking interface.

• TX and RX: Serial data interface for transmission and reception.

• Status flags: Status flags for errors in communication.

• Clock and Reset: Core clock and reset.

• UART Transmitter: Converts parallel data to serial data and sends via TX. Contains one

TX buffer to hold the data to be transmitted.

• UART Receiver: Converts serial data received via RX to parallel data. Contains two RX

buffers. One to shift and store the incoming data and second buffer holds the valid data to

be read out. The Receiver samples the data at 8x rate and samples in the middle of the

data (see Figure 3.3).

• Baud Generator: Generate baud clocks for TX and RX and controls the baud rate. 16-bit

pre-scaling is supported to generate wide range of baud clocks. TX uses baud clock of

frequency = desired baud rate, while RX uses 8x oversampling clock that of TX.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 6 | 27

Figure 3.2: UART Controller – Block Diagram

Figure 3.3: UART RX – Sampling at x8

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 7 | 27

4. Top-level Ports/Interfaces

Table 4.1 lists all top-level I/O ports/interfaces of the IP.

Signal Name Direction Width Description

Clock and Reset

clk input 1 Core clock

rstn input 1 Core reset (Asynchronous active-low)

Serial Interface

o_tx output 1 Serial data out

i_rx input 1 Serial data in

Control Interface

i_baudrate input 16 Baud rate configuration value.

Valid values: [1, 65535]

See here for details.

i_parity_mode input 2 Parity mode configuration.

2’bx0 = No parity bit in serial data

2’b01 = Odd parity bit

2’b11 = Even parity bit

i_frame_mode input 1 No. of start and stop bits in serial data.

1’b0 = 1 start bit and 1 stop bit

1’b1 = 1 start bit and 2 stop bits

i_lpbk_mode_en input 1 Internal Loopback enable.

To enable internal loopback of TX and RX

ports.

1’b0 = Internal loopback is disabled. This is the

functional mode of the IP.

1’b1 = Internal loopback is enabled; TX is

connected to RX internally. This is for

testing/diagnostic purpose only.

See here for details.

i_tx_break_en input 1 TX break enable.

Enables sending break frame in the next

transmission on TX.

See here for details.

i_tx_en input 1 TX enable.

To enable the transmitter and the baud clock

for serial transmission.

i_rx_en input 1 RX enable.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 8 | 27

To enable the receiver and the baud clock for

serial reception.

i_tx_rst input 1 TX reset.

Resets UART TX and the corresponding baud

generator. Active-high reset.

i_rx_rst input 1 RX reset.

Resets UART RX and the corresponding baud

generator. Active-high reset.

TX – Data Interface

i_data input 8 Byte to be transmitted

i_data_valid input 1 Byte valid

o_ready output 1 Transmitter ready to accept the byte to be

transmitted.

1’b0 = Not ready to accept the byte. Either the

transmitter is reset state or previous

transmission is in progress.

1’b1 = Ready to accept the byte, and no serial

transmission is going on.

RX – Data Interface

o_data output 8 Byte which is received

o_data_valid output 1 Byte valid.

1’b0 = No byte has been received

1’b1 = Byte has been received and it is valid

i_ready input 1 To read out the byte received at the receiver.

Status flags

o_tx_state output 1 State of UART TX.

1’b0 = TX is in disabled state

1’b1 = TX is in enabled state

o_rx_state output 1 State of UART TX.

1’b0 = RX is in disabled state

1’b1 = RX is in enabled state

o_rx_break output 1 Break flag.

The flag indicates that a break frame has been

received.

This status bit is valid when the received byte

is valid. This is a sticky status bit until next byte

is received.

See here for details.

o_parity_err output 1 Parity error.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 9 | 27

Indicates that parity error has occurred for the

last byte received. The received byte is still

available to read out from the receiver.

This error status bit is valid when the received

byte is valid. This is a sticky error until next byte

is received.

See here for details.

o_frame_err output 1 Frame error.

Indicates that frame error (one or more stop

bits not detected) has occurred for the last byte

received. The received byte is still available to

read out from the receiver.

This error status bit is valid when the received

byte is valid. This is a sticky error until next byte

is received.

See here for details.

Table 4.1: Top-level Ports/Interfaces

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 10 | 27

5. Designing with the IP

This chapter discusses guidelines including clocking and reset, configuration, and other

considerations while designing with the IP.

5.1 Clocking and Reset

The core clock clk synchronizes the complete operation of the core. Baud clocks for the UART

transmitter and receiver are generated from this clock. Reset rstn is asynchronous and active-

low. The assertion is asynchronous and the de-assertion should be synchronized to clk. The core

has built-in reset synchronizer to take care of the clean de-assertion.

5.2 Configuring the IP

Clock and Reset Sequencing

1. Assert the core reset.

2. Bring up the core clock.

3. Assert the core reset for at least 8 clock cycles.

4. Release the reset.

5. The core is now ready for configuration.

Configuring and Enabling TX

1. Configure parity mode, frame mode, baud rate.

2. Load the byte to be transmitted.

3. Enable TX. The core transmits the byte through serial TX.

4. Load the next byte when TX data interface is ready again.

5. TX can be disabled any time.

Configuring and Enabling RX

1. Configure parity mode, frame mode, baud rate.

2. Enable RX. The core is now ready to receive the byte through serial RX.

3. Read the byte out when RX data interface drives valid data.

4. Check status flags for errors.

5. RX can be disabled any time.

Baud Rate Configuration

An integer value B should be configured in i_baudrate to set the baud rate of serial data transfer

at the UART transmitter and receiver. It can be calculated as follows:

𝐵 = INT((
𝐶𝑜𝑟𝑒 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞

𝐵𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑
) 8⁄ − 1)

Where INT(x) = Nearest integer to x.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 11 | 27

For e.g., if the core clock is 100 MHz, and baud rate required is 9600, then B is configured as:

(
100 × 106

9600
) 8 − 1⁄ ≈ 𝟏𝟑𝟎𝟏

The maximum supported baud rate for a given core clock is for B = 1,
𝐶𝑜𝑟𝑒 𝑐𝑙𝑜𝑐𝑘 𝑓𝑟𝑒𝑞

16
.

Therefore, the minimum value which can be configured in B = 1 .

The receiver samples serial data at 8x. i.e., internally, 8x baud clock is required by the receiver.

Baud Generator generates 1x baud clock for the transmitter and 8x baud clock for the receiver

from the configured baud rate.

Baud rate error can be calculated as:

𝑇𝑎𝑟𝑔𝑒𝑡 𝑏𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 = 9600 𝑏𝑝𝑠

𝐴𝑐𝑡𝑢𝑎𝑙 𝑏𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 =
100000000

(1301 + 1) ∗ 8
= 9600.61 𝑏𝑝𝑠

𝐵𝑎𝑢𝑑 𝑟𝑎𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 =
(9600.61 − 9600)

9600
= 0.006%

Typically, in UART 8-bit data transfer, the maximum tolerable baud rate error is ±5%. Since B can

be configured only as integer, it introduces a rounding-off error in baud clock rate. It is imperative

that this error is kept within the prescribed range for reliable data transfer. Use higher-frequency

core clock to achieve more accurate baud clock generation, especially if higher baud rates are

targeted.

Following tables list examples of baud rate configuration for core clock = 100 MHz and 10 MHz.

The IP supports variety of wide range of baud rates. For custom baud rates, error % must be

ensured within the accepted tolerance before configuring.

Core clock = 100 MHz

Target Baud

Rate

(bps)

Actual Baud

Rate

(bps)

% Error
B value

(16-bit decimal)

300 300.00 -0.001 41666

600 600.01 +0.002 20832

1200 1199.96 -0.003 10416

2400 (Min) 2400.04 +0.006 5207

4800 4800.08 +0.006 2603

9600 9600.61 +0.006 1301

19200 19201.23 +0.006 650

38400 38402.46 -0.147 325

57600 57603.69 +0.006 216

115200 115207.40 +-0.452 108

Table 5.1: Baud Rate configuration for core clock 100 MHz

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 12 | 27

Core clock = 10 MHz

Target Baud

Rate

(bps)

Actual Baud

Rate

(bps)

% Error
B value

(16-bit decimal)

300 (Min) 299.98 -0.008 4166

600 600.10 +0.016 2082

1200 1199.62 -0.032 1041

2400 2399.23 -0.032 520

4800 4807.69 +0.160 259

9600 9615.38 +0.160 129

19200 19230.77 +0.160 64

38400 37878.79 -1.357 32

57600 56818.18 -1.357 21

115200 113636.36 -1.357 10

Table 5.2: Baud Rate configuration for 10 MHz core clock

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 13 | 27

5.3 Start and Stop bit Transmission and Detection

The TX line idles at 1’b1 by default after reset. The transmitter begins the transmission of byte by

pulling the TX line down to 1’b0 for a bit period. This is the start bit of the frame. After sending the

byte, the TX line is pulled up to 1’b1 for a bit period. This is the stop bit of the frame. The transmitter

brings the TX line back to the idle state of 1’b1 after the transmission.

The receiver remains in idle state as long as the RX line idles at 1’b1. Any falling edge is detected

by the receiver and is regarded as possible start bit transition. The receiver then samples the bit

in the middle to confirm whether it’s a valid start bit. If 1’b1 is sampled in the middle, it is a valid

start bit, otherwise the receiver aborts the start bit detection and returns to the idle state.

Figure 5.1: Start bit Transmission and Detection

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 14 | 27

5.4 Frame Format

The core supports different frame formats as shown in the figure.

Figure 5.2: Frame formats supported by the core

The frame can be 8-bit or 9-bit (if parity bit is enabled). Parity bit is the optional 9th bit if parity is

enabled. The parity is byte parity (Odd/Even).

No. of 1s in the data byte Odd parity bit Even parity bit

Odd 1’b0 1’b1

Even 1’b1 1’b0

Table 5.3: Parity bit in a frame

If two stop bits are enabled, two stop bits are added after the byte by the transmitter. And the

receiver expects two stop bits in the frame received. The receiver verifies both stop bits for frame

error.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 15 | 27

5.5 Resetting, Enabling, and Disabling Transmitter

The transmitter should be enabled to enable the TX baud clock and serial transmission. On

enabling, the loaded byte is transmitted via TX.

The transmitter can be disabled any time. If the transmitter is idle, it is immediately disabled. If the

transmitter is busy transmitting a byte, the byte is allowed to transmit completely before it is actually

disabled. The state of transmitter (o_tx_state) should be read as 1’b0 to confirm that it has been

disabled.

The transmitter can also be put in reset state by driving 1’b1 at i_tx_rst. This immediately

disables and resets the transmitter, baud clock, and buffers regardless of whether it was

transmitting a byte or not.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 16 | 27

5.6 Resetting, Enabling, and Disabling Receiver

The receiver should be enabled to enable the RX baud clock and serial reception. On enabling,

the receiver starts sampling the RX line and waits for start bit detection.

The receiver can be disabled any time. If the receiver is idle and waiting for start bit detection, it is

immediately disabled. If the receiver has already detected start bit and is busy receiving the byte,

it waits for the stop bit and completes the byte reception before it is actually disabled. The state of

receiver (o_rx_state) should be read as 1’b0 to confirm that it has been disabled.

The receiver can also be put in reset state by driving 1’b1 at i_rx_rst. This immediately disables

and resets the receiver, baud clock, and buffers regardless of whether it was receiving a byte or

not. If it was busy receiving a byte, the byte is lost.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 17 | 27

5.7 Data Transfer with the IP

The core has a simple valid-ready handshaking at the parallel data interface. The byte to be

sent/received has to be properly communicated with the core using handshake signals: valid and

ready. Figure 5.3 shows how a typical handshaking is done with the core to transmit and receive

two bytes.

Figure 5.3: Valid-Ready handshaking with the IP

Writing a Byte to Core at TX Data Interface

User may assert i_data_valid when a byte has to be transmitted via o_tx. The byte is written

on i_data. User needs not wait for o_ready to be asserted. The core asserts o_ready when it

has finished the transmission of the previous byte, and is ready to accept a new byte. It need not

wait for i_data_valid to be asserted. However, the byte is written to the core only when both

i_data_valid and o_ready are high.

Reading a Byte from Core at RX Data Interface

The core asserts o_data_valid when a byte has been received via i_rx. The byte is available

on o_data. It needs not wait for i_ready to be asserted. User may assert i_ready to read the

byte. It’s not mandatory that i_ready should be asserted only after o_data_valid; it may be

asserted in advance. However, the byte is read from the core only when both o_data_valid and

i_ready are high.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 18 | 27

5.8 Sending Breaks

The core supports sending break character. A break frame consists of start bit, followed by 9 or 10

bits of 0s, and a stop bit. The transmitter inserts 1 or 2 stop bits (break-limiter stop bits) at the end

of a break frame to guarantee the recognition of the start bit of the next frame.

Figure 5.4: Break Frame transmission

Even if parity is enabled, the parity bit is always sent as 1’b0.

Sequence to send a Break Frame

1. Enable TX break by setting i_tx_break_en to 1’b1.

2. Load a dummy byte to TX (the data value is ignored).

3. Enable TX.

4. Break frame is sent on TX with 10 or 11 bits of 0s followed by stop bit.

5. To send a data byte after the break, disable TX break and load the byte to TX.

The length of break frame is fixed. It is not possible to send longer break frames. To achieve longer

breaks, multiple break frames have to be sent in succession instead.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 19 | 27

5.9 Receiving Breaks

The core supports receiving breaks during data reception. The break condition is minimum of 10

or 11 bits of 0s (if parity is enabled) in a frame. Following are the conditions in the receiver to detect

a break frame.

1. Start bit followed by at least 9 bits or 10 bits of 0s (if parity enabled) is regarded as break

frame.

2. Always sets the frame error because the break frame contains incorrect stop bit.

3. Sets the flag o_rx_break.

4. The received data in the buffer will be 0x00.

5. Parity error is also generated if odd parity is configured at RX (because the parity bit = 1’b0

in a break frame, instead of the expected parity bit = 1’b1).

Figure 5.5: Break Frame reception

Breaks longer than 10 or 11 bits of 0s (if parity is enabled) can be received. The receiver idles after

receiving a break. Next data frame can be received only when a stop bit (at least one stop bit) is

received after the break. The receiver synchronizes to the start bit of the next frame and resumes

the reception.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 20 | 27

5.10 Internal Loopback support

The core supports internal loopback mode for testing and diagnostic purpose. In loopback mode,

TX port is connected to RX port internally.

Figure 5.6: Loopback mode in UART Controller

Sequence to enable Loopback testing

1. Disable TX and RX.

2. Configure TX and RX.

3. Enable loopback mode by setting i_lpbk_mode_en to 1’b1.

4. Enable TX and RX.

5. Load byte pattern to TX, observe the pattern received at RX.

Loopback mode should be enabled/disabled only when TX and RX are in the disabled state to

avoid glitches/broken frames.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 21 | 27

6. Integrating the IP

6.1 FIFO Integration and Interrupts

The IP has no FIFOs integrated at the transmitter or receiver. However, the valid-ready

handshaking at the parallel data interface eases the integration of FIFOs at user’s will. The valid

and ready signals can be directly interfaced to a typical FIFO with minimal/no glue-logic.

The core doesn’t provide interrupt control. The feature is left for the flexibility of the user who

integrates the core. Interrupts can be derived from the FIFO status at TX and RX. If FIFOs are not

implemented, valid and ready signals can be used to generate a level-sensitive interrupt and

interrupt acknowledge. For e.g.: a crude interrupt implementation at TX data interface would look

like:

1. Enable TX.

2. The core would assert ready to accept new byte.

3. Load the byte to be transmitted and assert valid. The core would de-assert ready and

transmits the byte through serial TX.

4. The core would assert ready after the byte transmission is complete. // Interrupt set

5. Acknowledge the core by loading the next byte and asserting valid, or disabling TX if no

more bytes to send. // Interrupt acknowledge/clear

6.2 Error Handling

The core reports two types of errors on reception of serial data via RX.

• Parity error

• Frame error

The error becomes valid when the byte received is valid and remains sticky until next byte is

received.

If parity is enabled, parity bit is expected to be embedded in the 9-bit data packet on transmission

and reception. Parity is checked and parity error is reported after receiving a byte, if any. The byte

is still buffered for reading out; however, the byte could be erroneous.

Frame error is reported after receiving a byte if the stop bit (any of the two stop bits in case of two

stop bits configuration) is not received correctly. The byte is still buffered for reading out. The core

will try to recover from frame error by re-syncing with the next start bit. However, frame error should

be addressed correctly by the system.

• If the frame error was due to the reception of break character (break flag should be read

as 1’b1), the core will re-sync to the next start bit (the falling edge after the break-limiter

stop bit) and the reception continues without any synchronization errors.

• If the frame error was not due to break (break flag should be read as 1’b0)., but due to

other reasons such as noise, de-synchronization, broken communication link, wrong frame

format etc, the core will re-sync to the next falling edge assuming it is the start bit. In this

case, the communication link integrity cannot be guaranteed anymore. The receiver could

have gone out-of-sync and appropriate system level corrective action should be taken to

re-establish the communication link synchronization.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 22 | 27

7. Testing the IP

UART Controller can be tested with the test benches provided with the IP package. The test bench

verifies the IP functionality in loopback configuration. There is also a synthesisable test bench to

test the IP on-board. On board, the core is tested by connecting TX and RX pins in loopback

configuration. The on-board test bench:

1. Configures the IP in user-defined configuration after reset.

2. Enables TX and RX.

3. Drive data 0x00 to 0xFF with frequent break frames at TX.

4. Reports errors on receiving, if any.

Figure 7.1: UART IP – Testing in Loopback configuration

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 23 | 27

8. Application Notes

• The receiver can be configured for 1 stop bit and can still receive two or more stop bits

from the external transmitter. In this case, the receiver verifies only the first stop bit and

gets more time to synchronize to the next frame. But, if the receiver is configured for 2 stop

bits, it always expects and verifies both stop bits in the frame received.

• The core can function in half-duplex mode as only a “Transmitter” or “Receiver” by disabling

RX or TX and enabling only the other. Alternatively, RX or TX can be kept in reset state.

This saves power.

• The core should be disabled before re-configuring to not break the data integrity.

• The core samples the RX data only in the middle of the receiving bit. It is a make-or-break

sampler.

• The core supports wide range of core clock and baud rates with the built-in 16-bit pre-

scaler in the Baud Generator. The value configured should adhere to the supported range

and the baud rate error tolerance as described in Baud Rate Configuration.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 24 | 27

9. Known Limitations/Issues

[NOT APPLICABLE]

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 25 | 27

Appendix

a) FPGA Resource Utilization

FPGA Targeted Xilinx Zybo Z7-20 (XC7-Z020-CLG400-1), Artix-7 FPGA based board

Synthesiser Vivado 2019.2

Targeted clock frequency 100 MHz

LUTs 142

Registers 115

b) Test Summary

FPGA Targeted Xilinx Zybo Z7-20 (XC7-Z020-CLG400-1), Artix-7 FPGA based board

Synthesiser Vivado 2019.2

Core clock 10-100 MHz

Baud rates tested 300 to 115200 bps

Parity modes tested All modes

Frame modes tested All modes

Test mode Loopback internal/external, and with other UART devices

Test result Successfully passed

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 26 | 27

Revision History

The following tables shows the revision history of this document.

Date IP Version Revision

Feb-2024 1.2 • Initial version

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

U A R T C o n t r o l l e r v 1 . 2 P a g e 27 | 27

UART Controller v1.2
An open-source licensed soft IP core

Developer : Mitu Raj

Vendor : Chipmunk Logic™, chip@chipmunklogic.com

Website : chipmunklogic.com

https://chipmunklogic.com/
mailto:chip@chipmunklogic.com?subject=Query
https://chipmunklogic.com/

