
chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 1 / 18

STA by examples - using SDC

- Mitu Raj, chip@chipmunklogic.com, Dec-2024

Prologue

Along with the RTL, I have always made it a habit to write the timing constraints for the designs

whenever I compile and synthesise the RTL on FPGAs. It enables timing analysis (STA) of the

design and helps to understand how good the design is timing-performance-wise.

This document compiles a set of design examples with commonly encountered clocking schemes,

and discusses how to write the SDC timing constraints for the clocks. Timing exceptions are also

discussed with examples. Tool specific options are also discussed in some examples. The

document covers only the fundamental aspects of writing timing constraints using SDC. It doesn’t

go deep into the syntax, intricacies, and variations of SDC commands. For complete details on

each SDC command used in the examples, please refer to the SDC1.7 specs in [1].

Clock constraints

This section discusses how to create clock constraints which characterize clocks in a design.

1. Creating clocks

DESIGN PROBLEM 1

A counter runs at a clock frequency = 100 MHz. The clock comes from an input port.

SDC

Create clock at the input port clk

Case 1: The clock has 0° phase shift, 50% duty cycle /``__/

create_clock -name clk -period 10.00 -waveform {0 5} [get_ports clk]

Case 2: The clock has a different duty cycle = 60% /```_/

create_clock -name clk -period 10.00 -waveform {0 6} [get_ports clk]

// Case 3: The clock has 180° phase shift __/``\

create_clock -name clk -period 10.00 -waveform {5 10} [get_ports clk]

DESIGN PROBLEM 2

A counter runs at a clock frequency = 100 MHz. The clock is driven by a divide-by-2 clock divider

circuit implemented in the RTL. The master clock comes from an input port.

https://chipmunklogic.com/
mailto:chip@chipmunklogic.com

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 2 / 18

SDC

Create base clock at the input port

create_clock -name clkin -period 10.00 -waveform {0 5} [get_ports i_clk]

Create divided clock from the base clock

create_generated_clock -name clk -divide_by 2 -source [get_ports i_clk] [get_pins {tff/Q}]

OR

create_generated_clock -name clk -divide_by 2 -source [get_pins {tff/CLK}] [get_pins

{tff/Q}]

Notes

▪ Generated clocks are treated by the STA tool as synchronous to master/base clocks and automatically

infers source latency = source latency of base clock + latency between the base and generated clock

definition points.

▪ If you create the divided clock as master clock instead of using create_generated_clock, the disadvantage

is that it will be treated as asynchronous clock. Hence, latencies should be explicitly defined. So, this is

recommended to be avoided.

DESIGN PROBLEM 3

A counter runs at a clock frequency = 100 MHz. The clock is driven by the divide-by-2 output clock

from a PLL. The PLL input clock comes from an input port.

SDC

Create base clock at the input port

create_clock -name i_clk -period 10.00 -waveform {0 5} [get_ports i_clk]

Create PLL output clock from the base clock

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 3 / 18

create_generated_clock -name clk -divide_by 2 -source [get_pins {pll/CLKIN}] [get_pins

{pll/CLK0}]

Create base clock and PLL output clocks automatically

Applicable only to Quartus for Altera FPGAs only…

derive_pll_clocks -create_base_clocks

DESIGN PROBLEM 4

A counter is clocked by a clock mux which selects between clocks = 50/100/200 MHz, which are

driven from input ports. The clock mux is internal to the design and the clocks don’t interact outside

the mux.

SDC

Create all clocks at the input ports

create_clock -name clkA -period 20.00 -waveform {0 10} [get_ports clkA]

create_clock -name clkB -period 10.00 -waveform {0 5} [get_ports clkB]

create_clock -name clkC -period 5.00 -waveform {0 2.5} [get_ports clkC]

Define logically exclusive clocking

set_clock_groups -logically_exclusive -group {clkA} -group {clkB} -group {clkC}

OR

Define false paths between clock domains (not recommended, deprecated practice…)

set_false_path -from clkA -to clkB

set_false_path -from clkA -to clkC

set_false_path -from clkB -to clkA

set_false_path -from clkB -to clkC

set_false_path -from clkC -to clkA

set_false_path -from clkC -to clkB

Notes

▪ The clocks are “logically exclusive” because even though all the clocks exist together inside the design,

only one of the clocks can drive the counter at a time.

▪ If the select signal is dynamic, the mux requires clock gating checks. Clock gating checks are automatically

inferred by the STA tool for simple cells like clock mux.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 4 / 18

▪ If the select signal is static, it can be constrained by set_case_analysis <0/1/2> <select pin>. This performs

a constrained timing analysis. If set_case_analysis is not used, all the three clocks are taken into account

for timing analysis.

▪ No need to create generated clock at the mux output as the input clocks should be auto-propagated for

simple cells like clock mux.

DESIGN PROBLEM 5

A counter is clocked by a divide-by-4 clock divider circuit. The master clock of the clock divider is

driven by a clock mux which selects between clocks = 50/100/200 MHz, coming from input ports.

The clock mux is internal to the design and they don’t interact outside the mux.

SDC

Create all base clocks at the input ports

create_clock -name clkA -period 20.00 -waveform {0 10} [get_ports clkA]

create_clock -name clkB -period 10.00 -waveform {0 5} [get_ports clkB]

create_clock -name clkC -period 5.00 -waveform {0 2.5} [get_ports clkC]

Create generated clock at the divider output from each base clock

create_generated_clock -name clkA_by_4 -divide_by 4 -source [get_ports clkA] [get_pins

{clkdvd/ff1/Q}]

create_generated_clock -name clkB_by_4 -divide_by 4 -source [get_ports clkB] [get_pins

{clkdvd/ff1/Q}] -add

create_generated_clock -name clkC_by_4 -divide_by 4 -source [get_ports clkC] [get_pins

{clkdvd/ff1/Q}] -add

Define logically exclusive clocking

set_clock_groups -logically_exclusive -group {clkA clkAgen} -group {clkB clkBgen} -group

{clkC clkCgen}

Notes

▪ Pay attention to the grouping of clocks in the exclusion constraint. Synchronous clocks (base and

generated) are grouped together.

DESIGN PROBLEM 6

A counter is clocked by a clock mux which selects between clocks = 50/100 MHz, which are driven

from input ports. The clock mux is internal to the design and they interact outside the mux as shown

in the diagram.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 5 / 18

SDC

Create all base clocks at the input ports

create_clock -name clkA -period 20.00 -waveform {0 10} [get_ports clkA]

create_clock -name clkB -period 10.00 -waveform {0 5} [get_ports clkB]

Create generated clock at the mux output for each base clock

create_generated_clock -name clkAmux -divide_by 1 -source [get_ports clkA] [get_pins

{clkmux/o}]

create_generated_clock -name clkBmux -divide_by 1 -source [get_ports clkB] [get_pins

{clkmux/o}] -add

Define logically exclusive clocking only for generated clocks

set_clock_groups -logically_exclusive -group {clkAmux} -group {clkBmux}

DESIGN PROBLEM 7

A counter is clocked by a clock mux which selects between clocks = 50/100/200 MHz, which are

driven from input ports. The clock mux is external to the design (say, a jumper wire on the PCB

selects the clock).

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 6 / 18

SDC

Create all clocks at the master clock input port

create_clock -name clkA -period 20.00 -waveform {0 10} [get_ports clk]

create_clock -name clkB -period 10.00 -waveform {0 5} [get_ports clk] -add

create_clock -name clkC -period 5.00 -waveform {0 2.5} [get_ports clk] -add

Define physically exclusive clocking

set_clock_groups -physically_exclusive -group {clkA} -group {clkB} -group {clkC}

Notes

▪ The clocks are “physically exclusive” because only one clock can exist inside the design and drives the

design at any given time.

DESIGN PROBLEM 8

A counter is clocked by a gated clock = 100 MHz from a clock gating cell. The gate signal is

dynamically driven in the design. The ungated master clock comes from an input port.

SDC

Create base clock at the input port

create_clock -name clkin -period 10.00 -waveform {0 10} [get_ports i_clk]

Create gated clock at the output of the gating cell

create_generated_clock -name clk -divide_by 1 -source [get_pins igc/CLKIN] [get_pins

{igc/CLKOUT}]

Set clock gating check on the gating cell

set_clock_gating_check -high [get_cells ANDGATE]

set_clock_gating_check -low [get_cells ORGATE]

Notes

▪ In case of simple gating cells like AND, OR gate, or ICG macro cells, no need to specify clock gate check

as it is automatically inferred.

▪ In case of simple gating cells like AND, OR gate, or multiplexers, or ICG macro cells, the tool should be

able to auto-propagate the clock to the output. In such cases, no need to create generated clock.

▪ In case of multiplexers, or latch-based gating cells, clock gating check should be explicitly specified.

▪ In case of complex cells where the setup/hold relation is unknown, the setup and hold margins should be

explicitly mentioned for the clock gating check with appropriate flags (-setup, -hold, -high, -low).

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 7 / 18

▪ In case of multiplexers, the clock gating check happens on select pin. One or more of the input clocks,

which you know by design cannot cause glitch on switching from/to, can be disabled from gating check

by set_disable_clock_gating_check <pin>. And enable set_enable_clock_gating_check -high/low on the

other pins.

DESIGN PROBLEM 9

A design is clocked by a clock mux which selects between two clocks = 50/100 MHz, which are

driven from input ports. The select signal is dynamically generated from another clock domain

running at 25 MHz. By design, clkB is ensured to be low while switching the select signal. Derive

the clock gating checks.

SDC

Create all base clocks at the input port

create_clock -name clkA -period 20.00 -waveform {0 10} [get_ports clkA]

create_clock -name clkB -period 10.00 -waveform {0 5} [get_ports clkB]

Set clock gating check only on i0 pin of the mux (active-high)

set_clock_gating_check -high [get_cells mux0]

set_disable_clock_gating_check [get_pins mux0/i1]

DESIGN PROBLEM 10

A design has clock distribution as shown in the diagram. Assume that the PLL settings are

dynamic, and gating cells are standard ICG macro cells. Constrain all clocks of this design.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 8 / 18

SDC

Create oscillator (OSC) clock = 50 MHz at the input port

create_clock -name clk_osc -period 200.00 -waveform {0 100} [get_ports i_clk]

Create PLL output clock

create_clock -name pll_clk -period 2.00 -waveform {0 1.00} [get_pins {pll/CLKOUT}]

Define logically exclusive clocking between OSC and PLL clocks

set_clock_groups -logically_exclusive -group {clk_osc} -group {pll_clk}

Created generated clock clkA at the divider output from each base clock

create_generated_clock -name clkA_from_osc -divide_by 4 -source [get_ports i_clk] [get_pins

{clk_divider/ff1/Q}]

create_generated_clock -name clkA_from_pll -divide_by 4 -source [get_pins {pll/CLKOUT}]

[get_pins {clk_divider/ff1/Q}] -add

Created generated clock clkB at the divider outputs from each base clock

create_generated_clock -name clkB_from_osc -divide_by 2 -source [get_ports i_clk] [get_pins

{clk_divider/ff1/Q}]

create_generated_clock -name clkB_from_pll -divide_by 2 -source [get_pins {pll/CLKOUT}]

[get_pins {clk_divider/ff1/Q}] -add

Create gated clock for block_A at the gating cell output from each master clock

create_generated_clock -name clkA_from_osc_gated_ -divide_by 1 -source [get_pins

{gating_cell_A/CLKIN}] -master_clock [clkA_from_osc] [get_pins {gating_cell_A/CLKOUT}]

create_generated_clock -name clkA_from_pll_gated -divide_by 1 -source [get_pins

{gating_cell_A/CLKIN}] -master_clock [clkA_from_pll] [get_pins {gating_cell_A/CLKOUT}] -add

2. Creating clock uncertainties

Clock jitter and other pessimisms can be modelled as setup and hold uncertainties.

SDC

Intra-clock uncertainties

set_clock_uncertainty -setup 0.20 [get_clocks clk]

set_clock_uncertainty -hold 0.20 [get_clocks clk]

Inter-clock uncertainties (across different clock domains)

set_clock_uncertainty -setup 0.20 -from [get_clocks clk1] -to [get_clocks clk2]

set_clock_uncertainty -hold 0.20 -from [get_clocks clk1] -to [get_clocks clk2]

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 9 / 18

3. Creating clock transition times/slews

At the output of PLL models or an input port, the STA tool may not be able to compute the transition

times automatically, and hence leads to less accurate timing analysis. In such cases, the transition

time/slew can be explicitly specified at the source of the clock.

SDC

Clock transition times (rise/fall)

set_clock_transition -rise 0.10 [get_clocks clk]

set_clock_transition -fall 0.12 [get_clocks clk]

This specification applies only for ideal clocks and is disregarded once the clock trees are built, at

which point, actual transition times at the clock pins are used. If a clock is defined at an input port,

use the set_input_transition specification to specify the slew on the clock [1].

4. Creating clock latencies

Source and network latencies of clock can be specified. Source latency (insertion delay) is the on-

chip or off-chip delay from the actual source of clock to the clock definition point. Network latency

is the delay from clock definition point to a clock pin in a flip-flop or some clocked element.

Image source: [1]

SDC

Network latency

set_clock_latency 1.80 -rise [get_clocks clk]

set_clock_latency 1.90 -fall [all_clocks]

Use set_propagated_clocks in SDC after CTS in ASICs

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 10 / 18

Source latency

set_clock_latency 1.80 -max -source [get_clocks clk]

set_clock_latency 1.20 -min -source [get_clocks clk]

For ASICs, network latency specification is just an estimate used for STA before CTS and is

disregarded once the clock trees are built. At this point after CTS, (actual network latency + source

latency spec) is used as the net clock latency if set_propagated_clocks is set.

Timing Exceptions

Timing exceptions are constraints that modify the default behavior of the STA tool when it

evaluates the timing of paths in a design. Most commonly used timing exceptions are discussed

in this section.

Note: You may have already noticed the use some of these constraints in the earlier design

examples.

1. False Paths

False paths are the timing paths in a design that need not be timed due to several reasons. The

STA tool ignores timing of the paths when they are constrained as false paths. Described below

are some examples where this timing exception may be used.

DESIGN PROBLEM 1

A path (red colored path in the diagram) is a functionally/structurally impossible timing path in the

design. This path should be exempted from timing analysis.

SDC

Network latency

set_false_path -from [get_pins {mux0/i0}] -to [get_pins {mux1/o}]

OR

set_false_path -through [get_pins {mux0/i0}] -through [get_pins {mux1/o}]

DESIGN PROBLEM 2

A design can function in two modes: functional, scan (non-functional). Functional mode uses max

clock = 500 MHz, while scan mode uses clock = 50 MHz. Scan inputs of all registers are unused

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 11 / 18

in functional mode, and hence not required to be timed for functional clock. Convey this

requirement to the STA tool.

SDC

Create all clocks

create_clock -name clk_func -period 2.00 [get_ports clk]

create_clock -name clk_scan -period 20.00 [get_ports clk] -add

Set false path to scan inputs

set_false_path -from clk_func -to [get_cells {reg*/SI}]

DESIGN PROBLEM 3

A design has an asynchronous reset (active-low). The reset de-assertion is synchronous. Since

the assertion is asynchronous, it can be ignored from timing. The design also has a test mode

input, which is quasi-static and doesn’t change during functional operation. The timing paths driven

by this signal can be ignored safely. Convey these requirements to the STA tool.

SDC

Set false path only for reset assertion

set_false_path -from [get_ports i_rstn] -fall

Set false path for quasi-static signals

set_false_path -from [get_ports i_testmode]

Notes

▪ Using set_false_path gives complete freedom to the implementation tools to take as much delay as they

want. To avoid this, designers prefer to put an upper-bound delay either through set_multicycle_path

through a set_max_delay. [2]

2. Clock Groups

The set_clock_groups constraint is used to specify unrelated clock domains in a design. We have

already seen some of its use cases (physically_exclusive, logically_exclusive) in previous

examples.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 12 / 18

DESIGN PROBLEM 1

A design has 3 clock domains. The domains clkA, clkB are synchronous, but the domain clkC is

unrelated to both clkA and clkB. Hence, all the clock domain crossing paths between clkC and

{clkA, clkB} can be ignored.

SDC

Set clock groups

set_clock_groups -asynchronous -group {clkA clkB} -group {clkC}

Notes

▪ Using set_clock_groups -asynchronous also gives complete freedom to the implementation tools to take

as much delay as they want. To avoid this, designers prefer to put an upper-bound delay either through

set_multicycle_path through a set_max_delay.

3. Max and Min Delays

These two constraints are used to override the setup and hold relationships. The constraint

set_max_delay overrides the setup, while set_min_delay overrides the hold relationship. One

popular use case of this constraint is in CDC paths, as a better alternative to false path/clock

groups constraint, which have no upper-bound on timing path delays.

DESIGN PROBLEM 1

A design has 2 asynchronous clock domains, clkA@100 MHz), clkB@50 MHz. The domain clkA

transfers 32-bit data to the domain clkB. A four-way request-ack handshaking scheme is

implemented between the domains. Constrain all the CDC paths for synthesis.

SDC

Create all clocks

create_clock -name clkA -period 10.00 [get_ports clkA]

create_clock -name clkB -period 20.00 [get_ports clkB]

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 13 / 18

Set max delay to have upper-bound delay on CDC paths…

In this case, max delay = min(TclkA, TclkB) is a good thumb rule to follow to

place the meta flop (ff1 in sync1/2) as close as possible…

set_max_delay -from [get_clocks clkA] -to [get_clocks clkB] 10.00

set_max_delay -from [get_clocks clkB] -to [get_clocks clkA] 10.00

In Xilinx FPGAs: only the datapath can be constrained to a max delay…

set_max_delay -datapath_only -from [get_clocks clkA] -to [get_clocks clkB] 10.00

set_max_delay -datapath_only -from [get_clocks clkB] -to [get_clocks clkA] 10.00

In Altera FPGAs: Set max skew to have upper-bound on skew between data bus bits.

In this case, we can use min(TclkA, TclkB)

set_max_skew -from [get_cells odata_reg[*]] -to [get_cells idata_reg[*]] 10.00

In Xilinx FPGAs: Set bus skew to have upper-bound on skew between data bus bits.

In this case, we can use min(TclkA, TclkB)

set_bus_skew -from [get_cells odata_reg[*]] -to [get_cells idata_reg[*]] 10.00

4. Multi-cycle Paths (MCP)

In some cases, the timing path between flops can be allowed to take more than one cycle. Hence,

the capture edge can be shifted forward by a specific number of cycles. In such cases, it is

desirable to change the default setup-hold relationship assumed by the STA tool. Multi-cycle path

constraints can be used to relax the timing on such paths.

DESIGN PROBLEM 1 – SLOW TO FAST MCP (integer multiple)

In a design, data is launched at every rising edge of clk1 = 50 MHz and it is captured at rising edge

of clk2 = 100 MHz every two clock cycles. These paths are by default analyzed pessimistically as

single-cycle paths. Timing can be relaxed in these paths by enforcing the design-intended setup-

hold relationship. Convey this requirement to the STA tool. Assume both clocks are synchronous

and driven from input ports.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 14 / 18

SDC

Create all clocks

create_clock -name clk1 -period 20.00 -waveform {0 10} [get_ports clk1]

create_clock -name clk2 -period 10.00 -waveform {0 5} [get_ports clk2]

Set MCP to shift the setup edge to 2nd edge of clk2, default = 1st edge

set_multicycle_path -setup 2 -from [get_clocks {clk1}] -to [get_clocks {clk2}]

-end

Set MCP to shift the hold edge by -1 clk2 cycle

set_multicycle_path -hold 1 -from [get_clocks {clk1}] -to [get_clocks {clk2}]

-end

OR

set_multicycle_path -setup 2 -from [get_pins {regA/c}] -to [get_pins {regb/d}]

-end

set_multicycle_path -hold 1 -from [get_pins {regA/c}] -to [get_pins {regb/d}]

-end

Notes

▪ Setup path MCP modifies the default hold relation as well. In summary, if a setup multicycle of N cycles

is specified, then most likely a hold multicycle of N-1 cycles should also be specified. A good rule of

thumb for multi-frequency multicycle path specification for slow to fast clock domain paths is to use the -

end option. [1]

DESIGN PROBLEM 2 – SLOW TO FAST MCP (non-integer multiple)

In a design, data is launched at rising edge of Tclk1 = 20 ns and it is captured at rising edge of

Tclk2 = 15 ns. The clock relationship is therefore in a non-integer ratio of 4:3. For no data loss and

matched throughput, the sender and receiver are operating in sync where launching happens

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 15 / 18

every 3 clock cycles and capturing happens every 4 clock cycles. These paths are by default

analyzed pessimistically with most restrictive setup-hold relationship. Timing can be relaxed in

these paths by enforcing the design-intended setup-hold relationship. Convey this requirement to

the STA tool. Assume both clocks are synchronous and driven from input ports.

SDC

When clocks are in a non-integer ratio, the exact setup and hold requirement may not always be

possible to be established with MCP constraints.

Create all clocks

create_clock -name clk1 -period 20.00 -waveform {0 10} [get_ports clk1]

create_clock -name clk2 -period 15.00 -waveform {0 7.5} [get_ports clk2]

Set MCP to shift the setup edge to 4th edge of clk2 for 40->90 = 50ns Tsetup

set_multicycle_path -setup 4 -from [get_clocks {clk1}] -to [get_clocks {clk2}] -

end

Set MCP to shift back the hold edge by 3 clk2 for 0->0 = 0ns Thold

set_multicycle_path -hold 3 -from [get_clocks {clk1}] -to [get_clocks {clk2}]

-end

The best solution:

With MCP, hold relationship looks fine, but we still have 60-50 = 10ns pessimism

on setup requirement, hence use set max/min delay constraints…

set_max_delay -rise_from [get_clocks clk1] -rise_to [get_clocks clk2] 60.00

set_min_delay -rise_from [get_clocks clk1] -rise_to [get_clocks clk2] 0

DESIGN PROBLEM 3 – FAST TO SLOW MCP (integer multiple)

In a design, data is launched at rising edge of clk1 = 200 MHz every four cycles, and it is captured

at every rising edge of clk2 = 50 MHz. These paths are by default analyzed pessimistically as

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 16 / 18

single-cycle paths. Timing can be relaxed in these paths by enforcing the design-intended setup-

hold relationship. Convey this requirement to the STA tool. Assume both clocks are synchronous

and driven from input ports.

SDC

Create all clocks

create_clock -name clk1 -period 5.00 [get_ports clk1]

create_clock -name clk2 -period 20.00 [get_ports clk2]

Set MCP to shift the setup edge to 4th edge of clk1, default = 1st edge in -ve

direction

set_multicycle_path -setup 4 -from [get_clocks {clk1}] -to [get_clocks {clk2}] -

start

Set MCP to shift the hold edge by +3 clk1 cycle

set_multicycle_path -hold 3 -from [get_clocks {clk1}] -to [get_clocks {clk2}] -

start

DESIGN PROBLEM 4 – FAST TO SLOW MCP (non-integer multiple)

In a design, data is launched at rising edge of Tclk1 = 15 ns and it is captured at rising edge of

Tclk2 = 20 ns. The clock relationship is therefore in a non-integer ratio of 4:3. For no data loss and

matched throughput, the sender and receiver are operating in sync where launching happens

every 4 clock cycles and capturing happens every 3 clock cycles. These paths are by default

analyzed pessimistically with most restrictive setup-hold relationship. Timing can be relaxed in

these paths by enforcing the design-intended setup-hold relationship. Convey this requirement to

the STA tool. Assume both clocks are synchronous and driven from input ports.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 17 / 18

SDC

When clocks are in a non-integer ratio, the exact setup and hold requirement may not always be

possible to be established with MCP constraints.

Create all clocks

create_clock -name clk1 -period 15.00 [get_ports clk1]

create_clock -name clk2 -period 20.00 [get_ports clk2]

Set MCP to shift the setup edge to 4th edge of clk1 in -ve direction for 30->80

= 50 ns Tsetup

set_multicycle_path -setup 4 -from [get_clocks {clk1}] -to [get_clocks {clk2}] -

start

Set MCP to shift the hold edge by +3 clk2 from default hold edge at 15 for 0->0

= 0 ns Thold

set_multicycle_path -hold 3 -from [get_clocks {clk1}] -to [get_clocks {clk2}] -

start

The best solution:

With MCP, hold relationship looks fine, but we still have 60-50 = 10ns pessimism

on setup requirement, hence use set max/min delay constraints…

set_max_delay -rise_from [get_clocks clk1] -rise_to [get_clocks clk2] 60.00

set_min_delay -rise_from [get_clocks clk1] -rise_to [get_clocks clk2] 0

DESIGN PROBLEM 5 – MCP at HALF CLOCK RATE

A design runs at clock frequency = 100 MHz. Internally, the design generates a clock enable pulse

every two clock cycles. The registers in the design launches/captures data only when the clock

enable is high. Therefore, effectively, the data is launched/captured at half clock rate. These paths

are by default analyzed pessimistically as single-cycle paths. Timing can be relaxed in these paths

by enforcing the design-intended setup-hold relationship. Convey this requirement to the STA tool.

Assume the clock is driven from an input port.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

S T A b y e x a m p l e s – u s i n g S D C P a g e 18 / 18

SDC

Create clock

create_clock -name clk -period 10.00 [get_ports clk]

Set MCP to shift the setup edge to 2nd edge of clk, default = 1st edge at all

enable-driven destination registers

set_multicycle_path -setup 2 -to [get_fanouts [get_pins clken|q] -through

[get_pins -hierarchical *|ena]] -end

Set MCP to shift the hold edge by -1 clk cycle at all enable-driven destination

registers

set_multicycle_path -hold 1 -to [get_fanouts [get_pins clken|q] -through [get_pins

-hierarchical *|ena]] -end

Epilogue

Currently, this document discusses only clock constraints and timing exceptions. I am planning to

add IO path constraints for system & source synchronous designs as well and update the

document in future.

References

[1] “Static Timing Analysis for Nanometer Designs – A Practical Approach”, by J. Bhasker, Rakesh Chadha,

Springer

[2] “Principles of VLSI RTL Design”, by Sanjay Churiwala, Sapan Garg, Springer

https://chipmunklogic.com/

