
chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 1 | 19

Benchmarking a RISC-V CPU using

CoreMark
Mitu Raj, chipmunklogic.com

May-2025

https://chipmunklogic.com/
https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 2 | 19

Contents

Benchmarking a RISC-V CPU using CoreMark ... 1

Setting the stage ... 3

1. Performance of a CPU .. 4

What is CPU benchmarking? ... 4

2. Benchmarking RISC-V CPUs ... 5

CoreMark and Dhrystone .. 5

3. Our Goal – CoreMark! .. 6

4. CoreMark process in a nutshell ... 7

5. Requirements in the Processor subsystem/SoC .. 8

6. CoreMark benchmark suite ... 9

Source files to be ported ... 10

7. Configuring CoreMark .. 11

Setting up the target platform environment .. 11

Implementing the timing function .. 11

Initializing UART .. 12

Implementing the print function .. 12

8. Adding a startup code .. 14

9. Compiling and building CoreMark ... 15

10. Interpreting benchmark results ... 17

11. Troubleshooting .. 18

Wrapping up ... 19

References .. 19

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 3 | 19

Setting the stage

Some of you may already know that I have been blogging a lot on the Pequeno RISC-V

CPU at chipmunklogic.com, which I designed from scratch in RTL. The Pequeno is a 5-

stage pipelined in-order RV32I processor designed to strike a balance between area and

performance.

After completing the design and validation, the first question, which left me pondering

was: how good is the processor I have designed? Is it “good enough” for what it was

designed for? Did it meet the performance goal? How does my CPU compare with others?

Where are the bottlenecks hidden? What can I improve about the pipeline of the CPU?

This whitepaper is a result of the above questions that I asked myself. In summary, this

whitepaper discusses the journey of benchmarking a RISC-V processor.

https://chipmunklogic.com/
https://github.com/iammituraj/pequeno_riscv
https://github.com/iammituraj/pequeno_riscv
https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 4 | 19

1. Performance of a CPU

In the context of a CPU designed in RTL, performance has two key aspects: timing

performance and computational performance. Timing performance is the maximum

achievable clock frequency of operation on targeted technology (ASIC/FPGA). But, in the

context of a CPU, “performance” usually refers to computational performance that reflects

how efficiently it executes instructions. CPI (Cycles Per Instruction) is an important metric

to measure the computational performance. For a single-issue in-order processor, the

design goal is to achieve a CPI close to 1. However, this is a theoretical ideal value.

Bottlenecks push this to values higher than 1. The practical design goal is to approach the

value of 1 as closely as possible.

The Pequeno (v1.0) achieved a timing performance of ≈ 115 MHz max. operational clock

frequency on the Artix-7 FPGA (-1 speed grade)—pretty satisfactory for an RV32I

processor. But the real question in my mind was: how does the CPI trend in the Pequeno

under realistic applications? How does it compare to other CPUs out there? That’s when I

came across the concept of CPU benchmarking.

What is CPU benchmarking?

CPU benchmarking is the process of measuring a processor’s performance by running a

set of standardized programs designed to stress different aspects of the CPU, such as

arithmetic computational ability, data handling with memory, and flow of control. The goal

of benchmarking is to quantify how efficiently the CPU executes real-world application

programs.

“Processor architects make different trade-offs between several design factors, such as the clock

frequency, core pipeline, degree of out-of-order execution, number of execution units, cache

organization and size, memory hierarchy, etc. The performance of a processor is determined by the

microarchitecture bottlenecks (design trade-offs) and how they are exercised.” [1]

Benchmark suites compile standardized programs to evaluate CPU performance. Once the

benchmark runs, it produces a performance score that can be compared with results from

other CPUs to gauge relative performance.

https://chipmunklogic.com/
https://en.wikipedia.org/wiki/Cycles_per_instruction

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 5 | 19

2. Benchmarking RISC-V CPUs

RISC-V is an open-source and extensible ISA. Benchmarking a RISC-V CPU not only

validates compliance with the ISA but also helps identify bottlenecks in the design. It helps

to validate performance improvements we are trying to achieve with optimizations and

ISA extensions added at different stages of development.

CoreMark and Dhrystone

CoreMark and Dhrystone are two of the popular industry-standard CPU benchmarks

designed to measure the computational performance of processors, especially in

embedded systems. Dhrystone has been around for a while (since 1984), being the most

popular benchmark. Dhrystone is a simple synthetic benchmark that evaluates integer

performance using a mix of string handling, assignments, and control structures. It reports

results in DMIPS (Dhrystone MIPS).

CoreMark® is a relatively new benchmark (since 2009).

“EEMBC’s CoreMark® is a benchmark that measures the performance of microcontrollers (MCUs)

and central processing units (CPUs) used in embedded systems. Replacing the antiquated Dhrystone

benchmark, Coremark contains implementations of the following algorithms: list processing (find

and sort), matrix manipulation (common matrix operations), state machine (determine if an input

stream contains valid numbers), and CRC (cyclic redundancy check). It is designed to run on devices

from 8-bit microcontrollers to 64-bit microprocessors.” [2]

CoreMark was created to overcome the shortcomings of Dhrystone, such as susceptibility

to compiler optimizations, lack of floating-point operations, and other limitations.

CoreMark measures CPU performance using a fixed workload of linked lists, matrix

operations, state machines, and CRC calculations, and reports results in iterations per

second (CoreMark/MHz). CoreMark focuses mainly on CPU core performance (ALU and

control logic). It doesn’t deeply stress-test the memory subsystem, caches, or bus

performance. Also, it normalizes the benchmark score to per MHz. This makes sense, as

CPUs with higher clock rates typically achieve higher benchmark scores, but CPUs with

lower clock rates can still outperform in terms of CPI. Hence, the score is normalized with

clock frequency.

https://chipmunklogic.com/
https://www.eembc.org/coremark/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 6 | 19

3. Our Goal – CoreMark!

I hope that’s enough theoretical background to kick-start things…. Let’s dive into the real

challenge! Now that the pros of CoreMark relative to Dhrystone have been understood,

let’s explore the process of benchmarking a RISC-V CPU with CoreMark.

Our goal is to take a RISC-V processor (a physical silicon chip or an RTL implementation),

port and build CoreMark, run it on the bare-metal on the CPU, and evaluate its benchmark

score.

To analyse the raw CPU performance, let’s assume that no cache is present and all memory accesses are designed

to be single-cycle access at Instruction and Data RAMs in the test platform.

Disclaimer

In writing this paper, I used the Pequeno as the target to perform the benchmark. While

the process described in this document is largely generic, certain steps may be tailored or

biased toward the specifics of the Pequeno architecture. But you will still get the gist of it

and be able to apply the idea to your own processor.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 7 | 19

4. CoreMark process in a nutshell

1. Port CoreMark to the target platform. Target platform is the SoC (System-On-Chip)

built around the processor.

2. Compile and build the ported CoreMark.

3. Generate the binaries and load them onto the Instruction & Data RAMs.

4. Boot the CPU with the binary and execute the CoreMark.

5. Log the results and print them.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 8 | 19

5. Requirements in the Processor subsystem/SoC

To perform CoreMark, the processor sub-system/SoC should support:

• A free-running counter – This is also called a performance counter. This free-

running 32-bit counter must be running on the same clock as the CPU. It is used

by the benchmark kernel to accurately time the CPU performance. The counter

should be a memory-mapped peripheral, so that software can access it.

• Serial interface like UART – to print benchmark results. The UART should be a

memory-mapped peripheral.

• Data & Instruction RAM – to load the binaries of the CoreMark program.

Figure 1: Building CoreMark for a RISC-V SoC

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 9 | 19

6. CoreMark benchmark suite

The official CoreMark® benchmark suite is available in the EEMBC GitHub repo[3]. Since

we are targeting bare-metal applications, the benchmark suite needs to be tuned and

modified to cross-compile and run on the target processor. This process is known as

porting. In this paper, we will target a CPU with RV32I architecture (32-bit RISC-V CPU

processor with Integer base instructions set).

To begin, follow these steps:

1. Clone the repo to your local.

2. For bare-metal application, only following directories/files are relevant to us. The

rest, you can ignore (unless, you want to dig into Linux porting)

 coremark

 coremark.h

 core_list_join.c

 core_main.c

 core_matrix.c

 core_state.c

 core_util.c

 barebones

 core_portme.h

 core_portme.c

 ee_printf.c

File Name Description

coremark/ The root directory

coremark.h The main header file that defines CoreMark-specific macros,
function prototypes, benchmark configuration etc.

core_list_join.c Benchmark kernel for linked list operations. It stresses
pointer operations, memory access

core_main.c The main C code where main() is defined. This will initialize
the benchmark, run it, and collect the results to dump.

core_matrix.c Benchmark kernel for matrix operations. It stresses integer
computations.

core_state.c Benchmark kernel for FSM processing. It stresses control
flow.

core_util.c Contains utility/helper functions for timing, CRC, etc.

coremark/barebones/ Contains the source codes that should be ported to the
target platform.

barebones/core_portme.h Defines platform-specific macros, function prototypes,
platform configuration etc.

barebones/core_portme.c Implements all platform-specific functions.

barebones/ee_printf.c Contains platform-specific printf() implementation to print
the benchmark results.

Table 1: CoreMark directory structure

https://chipmunklogic.com/
https://github.com/eembc/coremark

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 10 | 19

For more information on the files or directory structure of the benchmark suite, refer to the CoreMark

documentation inside coremark/docs/

Source files to be ported

In the directory tree of CoreMark, only the files inside the barebones directory need to be

modified. These are the files you need to port to the architecture of your processor. The

rest of the files have no platform dependency, and hence no need to be modified.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 11 | 19

7. Configuring CoreMark

Setting up the target platform environment

CoreMark parameters in the header file, core_portme.h are configured to be compatible

with the target platform environment. The below table describes what is typically defined

for an RV32I processor like the Pequeno in core_portme.h.

core_portme.h
MACRO VALUE Comments/Justification

HAS_FLOAT 0 RV32I has no floating point support.

HAS_TIME_H 0 <time.h> std lib function implementation NOT available.

USE_CLOCK 0 <time.h> std lib function implementation NOT available.

HAS_STDIO 0 Bare-metal doesn’t support standard I/O functions.

HAS_PRINTF 0 Bare-metal doesn’t support standard I/O functions like
printf()

COMPILER_VERSION DON’T CARE We will use a custom Makefile.

COMPILER_FLAGS DON’T CARE We will use a custom Makefile.

MEM_LOCATION DON’T’CARE We will use a custom Makefile.

SEED_METHOD SEED_VOLATILE Seed is generated using volatile variables.

MEM_METHOD MEM_STACK Data is allocated on stack, no dynamic allocation like heap.

MULTI_THREAD 1 Target is a single core processor; one thread per core.

MAIN_HAS_NO_ARGC 1 main() doesn’t support arguments.

MAIN_HAS_NO_RETURN 0 main() returns an int value = 0.
Table 2: Configuration macros in core_portme.h

Implementing the timing function

This is probably the most important part of the porting process. You must implement a

timing function in the CoreMark. So, what is a timing function, and what is its significance?

To understand that, we should understand the CoreMark execution flow.

CoreMark execution is broadly divided into two phases. The untimed part, and the timed

part. Below is a summary of the basic CoreMark execution flow in a processor.

1. The processor executes the startup code. // Untimed part, the CoreMark begins

only after this step…

2. CoreMark initializes components defined outside main(). // Untimed part

3. CoreMark enters the benchmark loop within main(), executing the benchmark

algorithms. // Timed part

4. CoreMark completes the benchmark, and logs the results. // Untimed part

The timed part is the most critical section of CoreMark. It consists of benchmark algorithms

that the CPU executes for a specified number of iterations. CoreMark evaluates CPU

performance by measuring the execution time, reporting both the number of clock cycles

and the actual elapsed real time. This finally translates to the CoreMark score of the CPU.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 12 | 19

To measure the timed part of CoreMark, a cycle-accurate timing function must be defined.

This is implemented in the barebones_clock() function in core_portme.c.

This is a two-step process.

1. Access the performance counter with the respective memory-mapped address.

2. Read the counter inside barebones_clock() and return its current value.

Initializing UART

After the benchmark run, the results are logged in memory. These results can be viewed

by reading them from memory and “printing” them. In this context, “printing” essentially

means sending the data stream to a standard output. Since we are working in a bare-

metal environment, without OS, there is no standard output available. Therefore, the

processor sub-system should support a serial interface such as UART. Once the benchmark

run is complete, the processor can “print” the results by sending the output to a host

system via the UART. The host system can display the results using a serial terminal

application like PuTTY or similar tools.

To enable printing data over the serial interface, the UART should be initialized on boot.

This routine can be implemented in the portable_init() function in core_portme.c.

In the CoreMark database of the Pequeno, I implemented the UART init function in ee_printf.c, which

implements all functions related to printing. This function is called in core_portme.c. This was done for better

code maintainability.

Check out the file core_portme.c in the GitHub repo of the Pequeno[4].

Implementing the print function

Once the benchmark run is complete, the results are printed using the ee_printf() function

inside main(). This function must be implemented by the user. As we discussed earlier,

the processor can output the results to the host via UART. Therefore, the ee_printf()

function should be implemented to access the UART and send the output stream out

through its serial interface.

Check out the file ee_printf.c in the GitHub repo of the Pequeno[4].

https://chipmunklogic.com/
https://github.com/iammituraj/pequeno_riscv/tree/main/coremark/barebones/core_portme.c
https://github.com/iammituraj/pequeno_riscv
https://github.com/iammituraj/pequeno_riscv/tree/main/coremark/barebones/ee_printf.c
https://github.com/iammituraj/pequeno_riscv

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 13 | 19

Figure 2: Printing results with UART

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 14 | 19

8. Adding a startup code

Apart from the CoreMark files, you may need to add a few of your own source files. For a

bare-metal application, at minimum, a startup code is required. Since there is no OS

running in the processor, this startup code would be responsible for initializing the system

on boot, before main() is called. Startup code is typically written in assembly.

In Pequeno, the startup code does the following functions:

1. Initialize the stack pointer.

2. Zero the BSS section.

3. Zero the general-purpose registers (not mandatory though…).

4. Jump to main()

5. Enter a NOP infinite loop after returning from main().

Check out the startup code in the GitHub repo of the Pequeno[4].

https://chipmunklogic.com/
https://github.com/iammituraj/pequeno_riscv/tree/main/coremark/startup.s
https://github.com/iammituraj/pequeno_riscv

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 15 | 19

9. Compiling and building CoreMark

We are almost there! Two more additional and important files are required to compile and

build CoreMark: Linker script and Makefile.

Linker script

Linker script specifies the memory layout to map the various segments/sections of the

benchmark code. It also specifies the target architecture, and output ELF format.

In embedded applications, the memory layout is typically divided between Instruction RAM

and Data RAM. The text segment is always mapped to Instruction RAM. The data, bss

segments are mapped to Data RAM. The rodata segment may be mapped to either

Instruction RAM or Data RAM, depending on the capability of the target architecture. In

case of the Pequeno, rodata is mapped to Data RAM.

Startup code must be mapped at the beginning of the text segment. And the base address

of the text segment should match the Reset vector PC of the processor. This ensures the

correct boot sequence: execution of startup routine, followed by a handoff to main().

Check out the Linker script in the GitHub repo of the Pequeno[4].

Makefile

Makefile is used to automate the compilation of CoreMark and dump the binaries. For the

Pequeno, I used a custom Makefile instead of the default one in the CoreMark repo. The

compiler toolchain must be properly configured in the Makefile (RISC-V GCC). All the

source files of CoreMark, including the startup code, should be compiled and linked with

the linker script. The outputs of the build process are: ELF file, Instruction and Data

binaries.

Two CoreMark parameters are typically passed to the compiler during the build.

Parameter Description

ITERATIONS No. of CoreMark iterations to be run

CLOCKS_PER_SEC Core clock frequency in Hz
Table 3: CoreMark parameters passed to Compiler

For an RV32I processor targeting baremetal applications, the following compiler and linker

flags are typically used.

Flag Type Description

-g Compiler Generates debug symbols (to debug with GDB etc.)

-O3 Compiler Highest optimization, typical for CoreMark.

-march=RV32I Compiler Target architecture = RV32I

-mabi=ilp32 Compiler Target ABI = ILP32 i.e., integer, long, pointer = 32-bit

-ffreestanding Compiler Free-standing baremetal environment with no OS and standard
libraries.

https://chipmunklogic.com/
https://github.com/iammituraj/pequeno_riscv/tree/main/coremark/linker.ld
https://github.com/iammituraj/pequeno_riscv

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 16 | 19

-fno-builtin Compiler Disables using builtin functions like memcpy. Instead, forces an
explicit function call assuming a custom implementation exists.

-fno-stack-protector Compiler Disables stack smashing protection.

-fno-zero-initialized-
in-bss

Compiler Prevents moving zero-initialized globals to bss segment. Keeps
them in data segment.

-mstrict-align Compiler Forces aligned memory accesses only.

-static Linker Forces static linking.

-nostartfiles Linker Prevents linking crt0/builtin startup files.
Table 4: Compiler & Linker flags

Another important point to keep in mind is that the compiler generates call to standard

SW based division and multiplication routines because RV32I architecture lacks hardware

multiplier and divider. The linker needs to resolve these references by linking against the

appropriate standard libraries (such as libgcc) that implement these routines. These library

paths should be passed in the linker flags.

Check out the Makefile in the GitHub repo of the Pequeno[4].

https://chipmunklogic.com/
https://github.com/iammituraj/pequeno_riscv/tree/main/coremark/Makefile
https://github.com/iammituraj/pequeno_riscv

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 17 | 19

10. Interpreting benchmark results

The figure below shows a typical benchmark result obtained after running CoreMark. A

successful run prints “Correct operation validated”, along with some key performance

metrics.

Figure 3: CoreMark results on the Pequeno

CoreMark score can be calculated as:

𝐶𝑜𝑟𝑒𝑀𝑎𝑟𝑘 𝑠𝑐𝑜𝑟𝑒 =
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑠𝑒𝑐

𝐶𝑜𝑟𝑒 𝑐𝑙𝑜𝑐𝑘 (𝑖𝑛 𝑀𝐻𝑧)
 𝐶𝑜𝑟𝑒𝑀𝑎𝑟𝑘/𝑀𝐻𝑧

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 18 | 19

11. Troubleshooting

CoreMark must run for at least 10 seconds to generate valid benchmark results. In case

of CoreMark fails to run and give outputs as expected, consider the following checks:

1. The No. of iterations is sufficient for the given clock frequency to run the CoreMark

for 10 seconds.

2. Verify the linker script and ensure all the sections are aligned and placed correctly.

3. Verify that the startup code is mapped at the beginning of the text section, and

that the base address of the text section matches the Reset vector PC of the

processor.

4. Check compiler flags for correctness and compatibility with the target.

5. Check whether the stack pointer is properly initialized, with enough space allocated

to prevent stack overflow.

6. Verify the ee_printf() function implementation by running standalone program.

7. Add debug prints at key points in core_main.c to trace program flow and see where

it gets hung. Please note that these debug prints must be later disabled for the

actual benchmark run, if it’s in the “timed part” of the code.

8. Worst-case scenario for RTL-implemented processors: If everything else fails,

consider that CoreMark acts as a functional ISA validator. Run a comprehensive

regression suite to check whether your processor implementation is functionally

correct and compliant with the ISA.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

B e n c h m a r k i n g a R I S C - V C P U u s i n g C o r e M a r k P a g e 19 | 19

Wrapping up

When I first planned to do benchmarking of the Pequeno, I couldn’t find a clear, single

resource explaining how to benchmark an RTL-designed RISC-V CPU with CoreMark. This

held me back for a while, until I began exploring multiple resources and codebases and

gradually understood the “behind-the-scenes”. What I’ve shared here is built on weeks of

reading, trial & error, and learning by doing. I hope this white paper provides a useful

starting point for everyone exploring the same path.

References

[1] “An Introduction to CPU Performance Benchmarks and How This Applies to the Home Market” – ARM, Nov

2021.

[2] EEMBC, the official website of CoreMark®: https://www.eembc.org/coremark/

[3] EEMBC CoreMark GitHub repo: https://github.com/eembc/coremark

[4] Pequeno RISC-V CPU: https://github.com/iammituraj/pequeno_riscv, a 32-bit RV32I processor from

chipmunklogic.com

https://chipmunklogic.com/
https://www.eembc.org/coremark/
https://github.com/eembc/coremark
https://github.com/iammituraj/pequeno_riscv
https://chipmunklogic.com/

