
chipmunklogic.com Chipmunk Logic™

L o g i c v s W i r e i n S V – s o m e m i s c o n c e p t i o n s P a g e 1 | 5

Logic vs Wire in SV – some misconceptions

- Mitu Raj, chip@chipmunklogic.com, Feb-2024

Background Story

Often when I browse across articles, blogs, and discussion forums in professional platforms,

I come across this comparison between wire and logic in SV. Many of them got me baffling

(but thanks to Dave Rich, for correcting people at many places; the living LRM!). Some of the

claims used to be true, but not anymore. This white paper’s objective is to break down the

popular misconceptions and outdated facts about this comparison. The internet may have

misguided many of us. So, let’s try to settle this, once and for all!

Logic and Wire – the origin of comparison

The wire and logic have been the subject of much debates, confusion, and comparisons ever

since SV introduced logic in SV3.0 LRM in 2002. The most popular statement surrounding the

comparison is:

“wire can have multiple drivers, but logic cannot.”

The logic cannot have multiple drivers. This used to be true, but not anymore. This is in fact

an outdated argument.

Cliff Cummings in one of the white papers in 2002 [1] analyzed and pointed out the flaws of

logic in SV3.0 (2002). The logic being not having multiple drivers was the first flaw he argued

about logic, which was odd for what is supposed to be the universal data type in the SV

standard.

The argument remained true for the updated standard, SV3.1 (2004) as well. The logic was

introduced in the standard as:

“Verilog-2001 has net data types, which can have 0, 1, X or Z, plus 7 strengths, giving 120 values.

It also has variable data types such as reg, which have 4 values 0, 1, X, Z. These are not just

different data types, they are used differently. SystemVerilog adds another 4-value data type,

called logic.”

The wire is a net data type, logic is a variable data type. Both are data types. Hence, the

use cases and comparisons between them made sense. But this made logic look vaguer in

the use cases, adding only more confusion along with the companions wire and reg. In

conclusion, logic was not so universal in application as analyzed by Cliff [1].

https://chipmunklogic.com/
mailto:chip@chipmunklogic.com

chipmunklogic.com Chipmunk Logic™

L o g i c v s W i r e i n S V – s o m e m i s c o n c e p t i o n s P a g e 2 | 5

Where does the comparison stand today?

Fast forwarding to the latest SV standard: SV IEEE Std 1800-2017, logic has evolved. SV now

has distinction between data types and data objects. The sec 6.2 says:

“SystemVerilog makes a distinction between an object and its data type. A data type is a set of

values and a set of operations that can be performed on those values. Data types can be used

to declare data objects or to define user-defined data types that are constructed from other

data types. A data object is a named entity that has a data value and a data type associated

with it, such as a parameter, a variable, or a net.”

Data objects can be divided into two groups: variables and nets. Both variables and nets

should be declared with their associated data type. The logic, int, bit etc are data types. The

wire is a net type data object. Everything which is declared as var, is variable type data object.

The differences and use cases of both are in detail explained in the LRM [2]).

For the context of this paper, the above information is enough to summarize our conclusion

on wire and logic:

“The wire is a data object, while logic is a data type which can be used to declare data objects

like wire or var.”

For e.g., you can declare:

 wire logic [3:0] data ; // data is a net of type logic

 var logic [3:0] data ; // data is a variable of type logic

The wire can have multiple drivers and associated resolution function, just like how the legacy

Verilog has always supported. Hence, leading to the most important conclusion:

“logic can have multiple drivers, if declared as wire.”

So much for the multiple driver arguments between logic and wire!

The SV IEEE Std 1800-2017 standard was published quite long ago. Still, the misconception

that logic doesn’t support multiple drivers exists around in the forums. Let me present a

fallacious code snippet which seems to back this argument.

Consider the following code snippet:

// Case 1

output logic [3:0] data ;

……

assign data = 1’z ;

assign data = a ;

The compiler will throw multiple driver error on data if compiled in SV-2017!

The code snippet is now changed to:

// Case 2

output wire [3:0] data ;

……

assign data = 1’z ;

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

L o g i c v s W i r e i n S V – s o m e m i s c o n c e p t i o n s P a g e 3 | 5

assign data = a ;

The compiler will throw no error in this case. And data is synthesisable to a tristate bus.

This seems to contradict our earlier conclusions on logic from the LRM. But it doesn’t really

contradict if you observe deeper. To understand the reason behind the compiler error, we

have to understand SV’s implicit behavior on signal declarations.

Implicit behaviors in SV – be cautious!

In SV, an internal signal or port can be declared implicitly or explicitly. Implicit declaration

happens when you decide to omit some information on signal/port to avoid being too verbose.

Explicit declaration happens when you add complete information on the signal/port. Typical

explicit declaration looks like:

// Port declaration

<port direction> <net type or variable type> <data type> <port name>

// Internal signal declaration

<net type or variable type> <data type> <signal name>

SV allows to skip one or more of the declaration parameters. This leads to implicit behaviors

as described in detail in the SV standard LRM. Let’s consider only what’s required in the

context of this paper.

1. If port direction is omitted, it defaults to inout port.

2. If net/variable type is omitted for an input port, it defaults to net type: wire

3. If net/variable type is omitted for an output port, it depends on the data type.

a. If data type is omitted as well, it defaults to net type: wire

b. If data type is declared explicitly, it defaults to variable type

4. If data type is omitted for any signal or port, it defaults to logic type. (Universal data

type!)

5. If net/variable type is omitted for an internal signal and is not used in port

connections/port mapping, it defaults to variable type.

Let’s go back to the earlier example (Case 1).

 output logic [3:0] data ; // This is equivalent to output var logic [3:0] data

SV IEEE Std 1800-2017 sec 6.5 says:

“Variables can be written by one continuous assignment or one port.”

The data is of variable type. Therefore, it doesn’t support multiple drivers through more than

one continuous assignments. Hence, the compiler would flag error.

Case 2:

output wire [3:0] data ; // This is equivalent to output wire logic [3:0] data

The data is of net type. It supports multiple drivers. Hence, the compiler flags no errors.

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

L o g i c v s W i r e i n S V – s o m e m i s c o n c e p t i o n s P a g e 4 | 5

Therefore, we can conclude that whether a signal/port supports multiple driver, depends on

whether it is declared as net or variable. It has nothing to with the data type.

Conclusion

Comparing logic and wire is like comparing apples and oranges by today’s SV standards. In

fact, it’s not even apples and oranges. The logic is a data type, while wire is a data object of

net type, which is described by the data type. If wire is assumed to be a car, logic tells if it’s a

hatchback or SUV!

The logic tells nothing about the multiple driver capability of a signal. It depends solely on

whether the signal is net or variable.

It is always good to stay updated with the latest SV LRM to not fall into misrepresentations

and misconceptions. When describing RTL, it is good to be wary of implicit declarations and

assignments in SV and be explicit whenever in doubt. And whenever in doubt: refer to and

trust only the LRM!

Appendix

The variable type has some confusing use cases. It supports having multiple drivers when

driven by two or more procedural blocks like always@() and always_ff() blocks. Except for

always_comb blocks, where it is not waived by SV compiler by default.

 always_ff @(posedge clk) b <= ~a ;

 always_ff @(posedge clk) b <= a & c ; // Designer added this accidentally

This piece of code leads to race conditions and the compiler may not even complain because

this is legal in SV. The simulator’s behavior could be unpredictable here. This vague behavior

is even mentioned in the standard sec 6.5:

“Variables can be written by one or more procedural statements, including procedural

continuous assignments. The last write determines the value.”

I personally never liked this feature of logic because this behavior doesn’t match with any

known synthesisable hardware!

https://chipmunklogic.com/

chipmunklogic.com Chipmunk Logic™

L o g i c v s W i r e i n S V – s o m e m i s c o n c e p t i o n s P a g e 5 | 5

Disclaimer

It’s possible that SV will update logic in future to address its flaws or update the use cases.

So, I want to re-state that all the content presented this white paper is in adherence to the

latest SV IEEE Std 1800-2017 standard, and may get outdated in future with newer standards.

References

[1] An analysis of the "logic" data type by Cliff Cummings – in 2002:

https://www.accellera.org/images/eda/sv-ec/att-0319/01-Logic_20021209.PDF

[2] SV IEEE Std 1800-2017: https://fpga.mit.edu/6205/_static/F23/documentation/1800-2017.pdf

https://chipmunklogic.com/
https://www.accellera.org/images/eda/sv-ec/att-0319/01-Logic_20021209.PDF
https://fpga.mit.edu/6205/_static/F23/documentation/1800-2017.pdf

